If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-18x+3=0
a = 25; b = -18; c = +3;
Δ = b2-4ac
Δ = -182-4·25·3
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{6}}{2*25}=\frac{18-2\sqrt{6}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{6}}{2*25}=\frac{18+2\sqrt{6}}{50} $
| 15+x-6=13 | | 3x^2-56=-2x | | 12=11x−4 | | 5x2=60 | | 9+4b=61 | | 10-5h=2 | | -6x+7=18 | | 4x+3x+2x+x=180 | | y=-2-6/7+1 | | -6x+7=17 | | (-15-6)m=2 | | 12s=13=25 | | 0.2p-8=0.4p-7 | | 6+n-6=8- | | 3/x-2=7/4x-8 | | 5(s+3)^2-14(s+3)=3 | | 40x^2+15x-4=0 | | (3*x–1)(5*x+4)–15*x^2=17 | | 12x+5+21x+3+25=180 | | 14-x/3=x/3 | | 12x+5+21x+25=180 | | 22/3w=48 | | 36+b^2=196 | | g/2+11=14 | | 2.4x=24 | | 25+12x+5=180 | | 2x-6(3x+12/9)=-8 | | 12=3/4x+5/6 | | 5/4x+1=1/4 | | -3x+6(2+5x)=-12 | | b^2=160 | | 4(7)+8y=20 |